Structured Data
This is the most advanced guide on using structured data to improve visibility and citation in LLMs. Learn practical examples, schema types, validation tools, and real-world use cases.
What is Structured Data?
Structured data is a machine-readable format that defines content elements for search engines and AI models. It provides clarity about your content by:
- Defining the purpose and type of content
- Improving citation and ranking in AI models
- Providing relationship context between entities
- Helping AI generate better answers using your data
Implementation Methods
There are three main ways to implement structured data:
- JSON-LD (preferred by Google & LLMs)
- Microdata
- RDFa
Recommended: JSON-LD is clean, decoupled from your HTML, and easiest to maintain.
Common Schema Types
Most useful schema types for LLM visibility:
Article
– For guides and blog postsFAQPage
– For question/answer sectionsHowTo
– For step-by-step instructionsProduct
– For tool and software listingsOrganization
– For establishing brand identityVideoObject
– For embedded YouTube/loom videos
Live JSON-LD Example
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "What is structured data?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Structured data is metadata added to content that helps LLMs and search engines better understand it."
}
}
]
}
Best Practices
- Use the most specific schema type possible
- Always include
author
,headline
, anddatePublished
- Validate schema with Google and Bing tools
- Use canonical tags with consistent URLs
- Update structured data when content changes
Test Your Structured Data
Pro Tip for LLM Optimization
LLMs like ChatGPT, Perplexity, and Claude can parse schema markup in real-time. This improves your chances of:
- Being cited as an answer source
- Appearing in Perplexity answer cards
- Being used as a fallback trusted source by AI models
Track Performance
- Use Google Search Console → Enhancements tab
- Search your content on Perplexity to check visibility
- Compare with ChatGPT's browser mode
Advanced Implementation Patterns
Complex scenarios often require combining multiple schema types. Here are some powerful patterns:
1. Article with Author and Organization
{
"@context": "https://schema.org",
"@type": "Article",
"headline": "Advanced LLM Optimization Techniques",
"author": {
"@type": "Person",
"name": "Jane Smith",
"jobTitle": "AI Research Director",
"affiliation": {
"@type": "Organization",
"name": "Tech University",
"url": "https://techuniversity.edu"
}
},
"publisher": {
"@type": "Organization",
"name": "LLM Guides",
"logo": {
"@type": "ImageObject",
"url": "https://llmlogs.com/logo.png"
}
},
"datePublished": "2024-03-20",
"dateModified": "2024-03-21"
}
2. HowTo with Video
{
"@context": "https://schema.org",
"@type": "HowTo",
"name": "Implementing Structured Data for LLMs",
"description": "Step-by-step guide to implementing structured data",
"video": {
"@type": "VideoObject",
"name": "Structured Data Tutorial",
"description": "Video tutorial on implementing structured data",
"thumbnailUrl": "https://llmlogs.com/thumb.jpg",
"uploadDate": "2024-03-20",
"duration": "PT10M30S"
},
"step": [
{
"@type": "HowToStep",
"name": "Choose Schema Type",
"text": "Select the most specific schema type for your content"
},
{
"@type": "HowToStep",
"name": "Implement JSON-LD",
"text": "Add JSON-LD script to your page"
}
]
}
Real-World Use Cases
Technical Documentation
For API documentation and technical guides:
{
"@context": "https://schema.org",
"@type": "TechArticle",
"headline": "LLM API Integration Guide",
"author": {
"@type": "Person",
"name": "John Doe",
"jobTitle": "Senior Developer"
},
"keywords": "LLM, API, integration, documentation",
"articleSection": "API Documentation",
"inLanguage": "en",
"code": {
"@type": "SoftwareSourceCode",
"codeRepository": "https://github.com/example/llm-api",
"programmingLanguage": "Python"
}
}
Product Documentation
For software and tool documentation:
{
"@context": "https://schema.org",
"@type": "Product",
"name": "LLM Optimization Tool",
"description": "Tool for optimizing content for LLMs",
"brand": {
"@type": "Brand",
"name": "LLM Guides"
},
"offers": {
"@type": "Offer",
"price": "99.99",
"priceCurrency": "USD"
},
"documentation": {
"@type": "TechArticle",
"headline": "User Guide",
"url": "https://llmlogs.com/docs"
}
}
Dynamic Implementation
For content that changes frequently or is generated dynamically:
JavaScript Implementation
function generateStructuredData(content) {
return {
"@context": "https://schema.org",
"@type": "Article",
"headline": content.title,
"author": {
"@type": "Person",
"name": content.author
},
"datePublished": content.publishDate,
"dateModified": content.updateDate
};
}
// Add to page
const script = document.createElement('script');
script.type = 'application/ld+json';
script.text = JSON.stringify(generateStructuredData(pageContent));
document.head.appendChild(script);
Server-Side Implementation
def generate_structured_data(article):
return {
"@context": "https://schema.org",
"@type": "Article",
"headline": article.title,
"author": {
"@type": "Person",
"name": article.author.name,
"jobTitle": article.author.title
},
"datePublished": article.publish_date.isoformat(),
"dateModified": article.update_date.isoformat()
}
# In your template
structured_data = generate_structured_data(article)
script_tag = f''
Monitoring and Maintenance
Keep your structured data effective with these practices:
- Regular Validation: Check your structured data monthly
- Performance Tracking: Monitor rich results in Search Console
- Content Updates: Update structured data when content changes
- Error Monitoring: Set up alerts for validation errors
Automated Testing Script
import requests
from bs4 import BeautifulSoup
import json
def validate_structured_data(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
scripts = soup.find_all('script', type='application/ld+json')
for script in scripts:
try:
data = json.loads(script.string)
# Validate against schema.org
validation_url = f"https://validator.schema.org/validate?url={url}"
validation = requests.get(validation_url)
return validation.json()
except json.JSONDecodeError:
return {"error": "Invalid JSON-LD"}