Structured Data

This is the most advanced guide on using structured data to improve visibility and citation in LLMs. Learn practical examples, schema types, validation tools, and real-world use cases.

What is Structured Data?

Structured data is a machine-readable format that defines content elements for search engines and AI models. It provides clarity about your content by:

  • Defining the purpose and type of content
  • Improving citation and ranking in AI models
  • Providing relationship context between entities
  • Helping AI generate better answers using your data

Implementation Methods

There are three main ways to implement structured data:

  • JSON-LD (preferred by Google & LLMs)
  • Microdata
  • RDFa

Recommended: JSON-LD is clean, decoupled from your HTML, and easiest to maintain.

Common Schema Types

Most useful schema types for LLM visibility:

  • Article – For guides and blog posts
  • FAQPage – For question/answer sections
  • HowTo – For step-by-step instructions
  • Product – For tool and software listings
  • Organization – For establishing brand identity
  • VideoObject – For embedded YouTube/loom videos

Live JSON-LD Example


{
  "@context": "https://schema.org",
  "@type": "FAQPage",
  "mainEntity": [
    {
      "@type": "Question",
      "name": "What is structured data?",
      "acceptedAnswer": {
        "@type": "Answer",
        "text": "Structured data is metadata added to content that helps LLMs and search engines better understand it."
      }
    }
  ]
}
                

Best Practices

  • Use the most specific schema type possible
  • Always include author, headline, and datePublished
  • Validate schema with Google and Bing tools
  • Use canonical tags with consistent URLs
  • Update structured data when content changes

Test Your Structured Data

Pro Tip for LLM Optimization

LLMs like ChatGPT, Perplexity, and Claude can parse schema markup in real-time. This improves your chances of:

  • Being cited as an answer source
  • Appearing in Perplexity answer cards
  • Being used as a fallback trusted source by AI models

Track Performance

  • Use Google Search Console → Enhancements tab
  • Search your content on Perplexity to check visibility
  • Compare with ChatGPT's browser mode

Advanced Implementation Patterns

Complex scenarios often require combining multiple schema types. Here are some powerful patterns:

1. Article with Author and Organization

{
  "@context": "https://schema.org",
  "@type": "Article",
  "headline": "Advanced LLM Optimization Techniques",
  "author": {
    "@type": "Person",
    "name": "Jane Smith",
    "jobTitle": "AI Research Director",
    "affiliation": {
      "@type": "Organization",
      "name": "Tech University",
      "url": "https://techuniversity.edu"
    }
  },
  "publisher": {
    "@type": "Organization",
    "name": "LLM Guides",
    "logo": {
      "@type": "ImageObject",
      "url": "https://llmlogs.com/logo.png"
    }
  },
  "datePublished": "2024-03-20",
  "dateModified": "2024-03-21"
}

2. HowTo with Video

{
  "@context": "https://schema.org",
  "@type": "HowTo",
  "name": "Implementing Structured Data for LLMs",
  "description": "Step-by-step guide to implementing structured data",
  "video": {
    "@type": "VideoObject",
    "name": "Structured Data Tutorial",
    "description": "Video tutorial on implementing structured data",
    "thumbnailUrl": "https://llmlogs.com/thumb.jpg",
    "uploadDate": "2024-03-20",
    "duration": "PT10M30S"
  },
  "step": [
    {
      "@type": "HowToStep",
      "name": "Choose Schema Type",
      "text": "Select the most specific schema type for your content"
    },
    {
      "@type": "HowToStep",
      "name": "Implement JSON-LD",
      "text": "Add JSON-LD script to your page"
    }
  ]
}

Real-World Use Cases

Technical Documentation

For API documentation and technical guides:

{
  "@context": "https://schema.org",
  "@type": "TechArticle",
  "headline": "LLM API Integration Guide",
  "author": {
    "@type": "Person",
    "name": "John Doe",
    "jobTitle": "Senior Developer"
  },
  "keywords": "LLM, API, integration, documentation",
  "articleSection": "API Documentation",
  "inLanguage": "en",
  "code": {
    "@type": "SoftwareSourceCode",
    "codeRepository": "https://github.com/example/llm-api",
    "programmingLanguage": "Python"
  }
}

Product Documentation

For software and tool documentation:

{
  "@context": "https://schema.org",
  "@type": "Product",
  "name": "LLM Optimization Tool",
  "description": "Tool for optimizing content for LLMs",
  "brand": {
    "@type": "Brand",
    "name": "LLM Guides"
  },
  "offers": {
    "@type": "Offer",
    "price": "99.99",
    "priceCurrency": "USD"
  },
  "documentation": {
    "@type": "TechArticle",
    "headline": "User Guide",
    "url": "https://llmlogs.com/docs"
  }
}

Dynamic Implementation

For content that changes frequently or is generated dynamically:

JavaScript Implementation

function generateStructuredData(content) {
  return {
    "@context": "https://schema.org",
    "@type": "Article",
    "headline": content.title,
    "author": {
      "@type": "Person",
      "name": content.author
    },
    "datePublished": content.publishDate,
    "dateModified": content.updateDate
  };
}

// Add to page
const script = document.createElement('script');
script.type = 'application/ld+json';
script.text = JSON.stringify(generateStructuredData(pageContent));
document.head.appendChild(script);

Server-Side Implementation

def generate_structured_data(article):
    return {
        "@context": "https://schema.org",
        "@type": "Article",
        "headline": article.title,
        "author": {
            "@type": "Person",
            "name": article.author.name,
            "jobTitle": article.author.title
        },
        "datePublished": article.publish_date.isoformat(),
        "dateModified": article.update_date.isoformat()
    }

# In your template
structured_data = generate_structured_data(article)
script_tag = f''

Monitoring and Maintenance

Keep your structured data effective with these practices:

  • Regular Validation: Check your structured data monthly
  • Performance Tracking: Monitor rich results in Search Console
  • Content Updates: Update structured data when content changes
  • Error Monitoring: Set up alerts for validation errors

Automated Testing Script

import requests
from bs4 import BeautifulSoup
import json

def validate_structured_data(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')
    scripts = soup.find_all('script', type='application/ld+json')
    
    for script in scripts:
        try:
            data = json.loads(script.string)
            # Validate against schema.org
            validation_url = f"https://validator.schema.org/validate?url={url}"
            validation = requests.get(validation_url)
            return validation.json()
        except json.JSONDecodeError:
            return {"error": "Invalid JSON-LD"}